
FLEX COUPLINGS

CARLSON-DIMOND & WRIGHT, INC.

CDWdrives Flex Couplings

Protect your equipment from costly downtime!

Now there's a solution to one of the most costly and troublesome problems facing maintenance personnel – coupling failure and the expensive downtime associated with fixing it. CDWdrives offers maintenance-free elastomeric coupling solutions.

Assembly & Disassembly

Assembly is simple and doesn't require nuts and bolts or special tools. A Samiflex Coupling has only four parts - two cast iron or steel hubs (A and B), one precision cast polyurethane insert (C), and one retaining ring from either polyamide or steel (D). Align hubs (A and B) on the shafts. Insert the elastic insert (C) into the parallel slots formed between hubs (A and B). Slide a polyamide or steel retaining ring (item D) over the insert securing both insert and ring between the hubs. Retaining rings with locking screws are provided as standard.

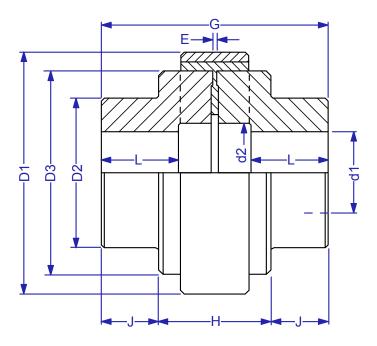
One significant benefit to using a Samiflex coupling is that once the hubs (A and B) are installed and aligned on the shafts, you will never have to move them again to replace an insert. Inserts are removed and replaced quickly and easily without the need to undo screws, bolts, or other fasteners by simply removing the retaining ring (D).

Advantages

- The coupling insert is removable without moving either driving or driven equipment.
- Change out of coupling insert is faster than any other coupling.
- No lubrication or maintenance is required over the life of the insert.
- You can rotate the hubs independently during a motor test.
- No metal-to-metal contact.
- Large bore to torque capacity.
- Vertical operation is possible with standard coupling.
- Retaining rings are provided with locking screws as standard.
- The standard insert can handle an extensive temperature range from -40 to 80°C (-40 to 180°F).
- High-temperature inserts are available up to 150°C (300°F).
- Polyurethane insert is very resistant to chemical attack.
- Polyurethane insert hardness options are available to optimize torque capacity and damping.

Samiflex Elastomeric Insert

The insert is manufactured using a unique polyurethane blend in three compounds and three hardness ratings, allowing the insert to meet or exceed your application requirements. The standard (Yellow) elastic insert is supplied at 95 shore A.


The standard (Yellow) insert has a hardness rating of 95 Shore A.

High performance inserts type HD (brown) and HDT (red) enable torque ratings to be increased by 40%.

Contact CDWdrives for assistance with sizing and selection.

Color Coded Elastic Inserts								
Туре	Code	Hardness	Color	Temp Rating				
Standard	STD	80 Shore A	Blue	-40 / 180° F				
Standard		95 Shore A	Yellow	-40 / 100° F				
High Temp	HT	95 Shore A	Orange	-40 / 300° F				
High	HD	97 Shore A	Brown	-40 / 180° F				
Performance	HDT	97 Shore A	Red	-40 / 300° F				

Technical Details and Dimensions

Co	oupling Type	A00	A0	A1	A2	АЗВ	A4B	A45	A5B	A55	A6	A7	A8	А9	A10	A11
Style STD Insert	Maximum HP per 100 RPM Max Cont. Torque in-lb	0.34 214	0.80 504	1.5 945	4.0 2,532	8.0 5,040	16.0 10,080	28.3 17,830	40.4 25,452	52.5 33,075	64.6 40,700	129 81,145	242 152,460	403 253,890	646 406,980	786 495,180
Style HD Insert	Maximum HP per 100 RPM Max Cont. Torque in-lb			2.0 1,260	5.3 3,340	10.4 6,550	21.7 13,670	36.6 23,060	53.0 33,390	68.6 43,220	87.7 55,250	156 98,280	294 185,220	468 294,840	755 475,650	1056 665,280
	Max. Speed - Unbalanced	9100	8200	7250	5440	4200	3275	2800	2600	2350	2200	1900	1600	1350	1100	1100
Technical Data	Max. Speed - Balanced	10000	9000	8000	6500	4800	3600	3100	2900	2600	2500	2200	1850	1600	1250	1250
	Moment of Inertia (lb-in2)	N/A	N/A	4.1	17.1	41	171	350	530	940	1,494	2,820	7,946	16,918	41,013	54,684
	Weight (lb)	0.7	1.8	3.7	8.6	15	29	42	57	79	110	154	309	474	772	903
Displacement Values	Axial Tolerance (in)	+0.012	+0.012	+0.02	+0.02	+0.03	+0.03	+0.04	+0.04	+0.04	+0.04	+0.04	+0.06	+0.06	+0.08	+0.08
	Radial / Parallel (in)	0.02	0.02	0.04	0.04	0.04	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.078	0.078	0.078
	Angular Tolerance	2°	2°	2°	2°	2°	1.3°	1.3°	1.3°	1.3°	1.3°	1°	1°	1°	1°	1°

Co	oupling Type	A00	Α0	A1	A2	АЗВ	A4B	A45	A5B	A55	A6	A7	A8	А9	A10	A11
	Max. Bore d1	7/8	1-3/8	1-5/8	2-1/8	2-3/4	3-3/4	3-1/4	4-1/2	4	4-1/2	5-1/2	6-1/8	7-1/2	9	9
	Pilot Bore	0.16	0.31	0.55	0.67	0.75	0.94	0.98	1.14	1.18	1.54	1.89	2.48	2.87	3.78	3.78
	D1	1.73	2.56	3.27	4.37	5.67	7.17	7.95	8.86	9.84	10.43	12.05	14.29	16.73	20.59	19.80
<u> </u>	D2	1.38	2.05	2.56	3.15	4.13	5.31	4.92	6.30	6.10	7.09	8.07	9.53	11.02	12.99	13.78
Dimensions (inches)	D3	1.38	2.05	2.56	3.39	4.57	5.91	6.69	7.48	8.46	9.17	10.51	12.83	15.16	19.02	18.03
ns (in	d2	0.87	1.26	1.54	1.77	2.05	2.76	3.54	3.50	4.53	4.41	5.31	6.18	7.40	8.58	8.50
Jsior	G	2.01	2.87	3.58	5.00	6.14	7.09	7.80	8.50	9.69	10.24	12.20	15.04	16.54	18.98	20.16
)imel	L	0.75	1.10	1.34	1.85	2.20	2.48	2.76	3.03	3.54	3.74	4.57	5.79	6.38	7.40	7.48
	Standard "DBSE"	0.51	0.67	0.91	1.30	1.73	2.13	2.28	2.44	2.60	2.76	3.07	3.46	3.74	4.17	5.20
	Dist. Between Hubs "E"	0.06	0.06	0.06	0.10	0.10	0.14	0.14	0.14	.014	0.14	0.16	0.20	.020	0.24	0.24
	Н				2.17	2.56	3.35	3.66	3.98	4.29	4.69	5.28	6.06	6.38	7.56	8.50
	J				1.42	1.77	1.85	2.05	2.24	2.68	2.76	3.46	4.49	5.08	5.71	5.83

- 1. Standard (STD) inserts will be supplied as standard unless specified. High torque inserts (HD) are available upon request.
- 2. Maximum speeds are based on cast iron hubs; higher speeds can be attained using ductile iron or steel hubs consult CDWdrives engineering.
- 3. Distance between shaft ends (DBSE) is based on the shafts mating flush with the end of the hub face. Shorter or longer shaft separations may be obtained by overhanging the shaft or hub.
- 4. Weights and inertias are based on solid hubs.
- 5. Max bore for steel hubs A45 = 4; A55 = 4-3/4; A6 = 5; A7 = 6

CDWdrives Flex Couplings

Coupling Selection

Method

Data required for coupling selection:

- Application details (for service factor)
- Horsepower and RPM of the driver
- Shaft details of the driving and driven equipment
- Determine the service factor (SF) from the application and classification list below
- Calculate the maximum HP/100 RPM rating: HP/100 rpm = (HP x 100 x SF)/RPM Select the coupling which has a higher max rating
- Compare the maximum RPM capacity & bore requirements to the catalog limits for the coupling selected

Example

Driver: water turbine (100 HP at 1800 rpm) Driven equipment: screw compressor

Turbine bore: 2.38" Compressor bore: 2.00"

Distance between shaft ends (DBSE): 5"

Service factor for the water turbine & screw compressor: SF=2

HP/100 RPM = (100 HP x 100 x 2) / 1800

HP/100 RPM = 11.1

Coupling selection based on max rating: A4B

Coupling bore capacity: 2-7/8"

The maximum speed for A4B is 3275 RPM unbalanced

DBSE for A4B is 5"

A4B is acceptable in this application

	Service Factors (SF)							
Load C	haracteristics	Electric Motor, Steam Turbine, Gas Turbine	Steam Engine, Water Turbine, 8 Cyl. Rec. Engine	6 Cyl. Recep. Engine	4 Cyl. Recep. Engine			
	Constant Torque - centrifugal pumps, compressors & blowers, light duty agitators and fans.	1.0	1.5	2.0	2.5			
	Slight Fluctuations - slurry pumps, screw compressors, lobe and vane blowers.	1.5	2.0	2.5	3.0			
<u></u>	Moderate Fluctuations and/or Slight Shock Loads double acting pumps, recip. comp.	2.0	2.5	3.0	3.5			
m	Large Fluctuations and/or Moderate Shock Loads 1 or 2 cylinder recip. pumps.	2.5	3.0	3.5	4.0			
M	Shock Loads or Light Torque Reversals slitters, rod mill, hot mill	3.0	3.5	4.0	Consult Factory			
M	Heavy Shock Loads or Large Torque Reversals feed rolls, reversing mills	Consult Factory	Consult Factory	Consult Factory	Consult Factory			

- 1. Use a minimum service factor of 1.25 when driving through a gearbox or using a direct on-line electric motor.
- 2. Consult CDWdrives when using a reciprocating engine with fewer than 4 cylinders.
- 3. Service Factors provided are for reference only. Customer experience may dictate the selection of different service factors.

CARLSON-DIMOND & WRIGHT, INC.

25201 Terra Industrial Drive, Suite B, Chesterfield, MI 48051

Ph: 586.949.5474 Fax: 586.949.4041

sales@cdwdrives.com www.cdwdrives.com www.cdwcouplings.com

ı	Your Authorized CDWdrives Distributor:
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	

CDWdrives FC012022

In accordance with *CDWdrives* established policy of continuous product improvement, the specifications and technical data contained in this document are subject to change without prior notice. Rotating equipment must be provided with suitable guarding, or injury may result.